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I, Introduction

Recently, topological concepts were used to interpret results of water-channel

experiments 1 and computations 2'3 for the laminar juncture-flow problem, which

involves the flow approaching a cylindrical obstacle mounted on a flat plate.

Confirmation of the presence of a saddle point of attachment, rather than one of

separation, proved that the flow approaching the obstacle was able to find an

alternative to separation in the classical sense. In the course of studying how it

happened that a saddle point of attachment had appeared, it was found

convenient to begin with virtually two-dimensional flow conditions by imagining

the cylinder diameter to be very large. The flow approaching the cylinder

necessarily had to separate, originating from a saddle point of separation at the

wall, located on the symmetry plane of the approaching flow. Successive

reductions in the diameter of the cylinder brought into play the transverse

velocity component. It was possible to follow its influence on the evolution of

the singular points and loci of zeroes of the velocity-vector components in the

symmetry plane. The evolution led eventually to a critical condition at which the

singular point in the external flow merged with the singular point at the wall,

changing the saddle point of separation to one of attachment.

The idea of following the evolution of loci of zeroes of vector components

may have wide application. It should prove useful, for example, in studying how



a two-dimensional separated flow becomes three-dimensional in response to

the introduction of an initially infinitesimal control parameter that brings into play

the third velocity component. The juncture-flow problem described above is

one such example, where cylinder curvature was the control parameter.

Another example is the evolution with angle of attack of the initially

axisymmetric separation bubble on the nose of a hemisphere-cylinder body,

angle of attack being the initially infinitesimal control parameter. The idea also

may prove helpful in the study of the flow approaching the leading-edge

stagnation line of an initially two-dimensional obstacle. Here, it is possible to

envision a sequence of flows directly analogous to that of the juncture-flow

problem described above. In the analysis to follow, however, the idea is

exploited in yet another direction. Following the evolution of loci of zeroes of

vector components in the presence of an adverse pressure gradient leads to a

concise derivation of critical conditions for the onset of separation. Separation

conditions derived for a two-dimensional flow are found to reproduce the well-

known Stratford criterion. A simple modification of the Stratford form is found

applicable to the symmetry plane of a three-dimensional flow.



II. Analysis of Sequence of Flows Leading 1;o Two-Dimensional Separation

The analysis to follow applies to steady flows only. The flows will be

laminar and incompressible, hence governed by the time-independent Navier-

Stokes equations for incompressible flow. Let us begin with a fully attached

flow over a smooth airfoil having a favorable pressure gradient. Let x represent

distance along the wall (starting from zero at the leading-edge stagnation point),

y represent distance normal to wall, positive into the flow. Consider the upper

surface. As noted on Figure 1, since vorticity at the wall must begin and end

with zero at the stagnation points, there will be a point on the surface where

_ox = O. At the wall, py = pcox, so this is also a point where py = O. On the other

hand, p_ = 0 at the stagnation points. Since at the wall, Px = -pcoy, coy must equal

zero at these points as well. Going around the airfoil, one notes that the points

where p_ = 0 alternate with the points where py = O. Since _ox= 0 at points where

py = O, and coy= 0 at points where p, = O, the extrema in wall vorticity also must

alternate in a circuit around the airfoil. Although the proof will not be presented

here, it is possible to show that this "alternation property" of the extrema in wall

pressure and wall vorticity must hold as a qeneral rule for all two-dimensional

obstacles defined by smooth closed curves (i.e., curves transformable into a

circle).



Now let us impose a region of adverse pressure gradient on the upper

surface between the leading edge and the point where cox = py = 0 (Fig. 2).

Consider the domain of x, a < x < b where Px (x, O) > O. There are two points

(x = a, b) where px(x, O) = O. Since at the wall Px = -/_coy, coy= 0 at x = a, b. The

situation is sketched in Fig. 3. One notes that:

Outside a, b, coy(x, O) > O.

Within a, b, coy(x, O) < O.

At anyx, coy> Oasy--_ oo,

while for a < x < b, _oy(x, O) < O.

So, for any x, a < x < b, there must be a value of y > 0 for which coy = O. There is

such a y for every value of x between x = a, x = b. Since coy is a continuous

function of (x,y), there must be a curve, y = f(x) on which coy = O, connecting the

points a, b (Fig. 4). Existence of a curve on which coy = 0 in the flow implies a

domain where the velocity profile u(y) will be inflexional. Since uy =-co,

ur/=-_oyand u_,= 0 _ inflexion point.

The region of adverse pressure gradient implies existence of a curve y = f(x) on

which coy= O. Existence of y = f(x) forces existence of a curve y = g(x) on which
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cox= 0 in order to fulfill the condition that points on the wall where soy = 0 must

alternate with points where cox = 0. The situation is sketched on Fig 5. The

"alternation property" also makes it necessary that the curve y = g(x) on which

cox= 0 cross the curve y = f(x) on which coz = 0. So there is a singular point inthe

flow at which co,,and soyare simultaneously zero. It is possible to show that this

singular point must be a saddle point.

Similarly, there will be a curve on which py

origins as the co,,

origins as the coy

the flow, giving a point where Px and py are simultaneously zero.

point also must be a saddle point.

= 0 starting from the same

= 0 curve, and a curve on which Px = 0 starting from the same

= 0 curve. Similarly, the Px = 0 and py= 0 curves must cross in

This singular

So the adverse pressure gradient creates extrema in pressure p and

vorticity co in the flow, preceding the onset of separation; i.e., preceding the

appearance of a singular point in the external flow. Therefore, just as surface

pressure extrema precede and so must accompany the appearance of singular

points in the skin-friction line pattern (cf. Ref. 4), it is already assured that

singular points in the external velocity field are preceded and so must be

accompanied by pressure and vorticity extrema.



f/).,- _ 1t)The phase portrait of gradco is illustrated in Fig. 6. The critical
\(Oy V

point where separation will occur is where _o,(x,O) = O,/co/= minimum with

respect to x. Separation will begin when the minimum value becomes

identically zero. It is important to note that the curves of gradro must be

orthogonal to the contour curves on each of which o = constant, and that the

contour curves encircle the point where separation will begin.

III. Separation Condition for Two-Dimensional Plane Flow

The phase portrait of gradco (Fig. 6) describes conditions at the onset of

separation. For simplicity, let us assume that the wall is virtually plane in the

vicinity of the point where separation will begin, so that x and y can be

considered Cartesian. Shift the origin of x to the point where separation will

begin; i.e., where tox = 0 on Fig. 6. With total head H defined as

1 2

+2) (1)

the Navier-Stokes equations take the form

H x = - t_(oy + pvro ].
(

i_o x - puo_ j

(2)
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where o_, = -V_u, cox= V:v. Introduce the stream function W such that

_lJr = _-Z
V_ _

(3)

Consider a curve y = q(x) and form dH along the curve:

dH = Hxdx + H_y = (H_ + Hy (x, q(x)) q'(x)) dx (4)

Substituting (2) and (3), (noting that dW = (v?, +q'(x)vZy)dx on y= q (x))yields

(5)

on y = q(x). If q(x) is allowed to be a closed curve consisting of the segments

C, L 1, L2 (cf. Fig. 7), then integrating dH around q(x) must yield zero; i.e.,

fdH+ IdH+ IdH=O (6)



4 £2 0

f + (8)SO

C Stl

From the phase portrait of gradco (Fig. 6), it can be seen that there is a contour

curve on which _o -- cons/, originating at the singular point (x o, y_) where

(o_,. _ 0._o x O), and ending at the wall at x = a. Let this curve be C.

co = const = _o (a) and

Then on C,

_ dH= pco,,,(a)fd_- l_f(co,,- q'oL_)dx
C C C

(9)

--
C

(lO)

The second term in (10), the viscous contribution, can be omitted on the basis of

the following argument: On C, d_ = O, oro_ x + q' (x)_oy = O. Then the integrand

o_y - q' (x)co x becomes _oy(l + q,Z). But the curve y = q(x) on the segment C is

very close to the curvey =--f(x) on which %. 0 (cf. Fig. 6), so that %,(xq(x)) ._

Wy(X,f(x)) _O. This ensures that the viscous contribution to (10) will be negligibly



small. On the segment L 1, L 1can be taken to be y = g(x) on which co, = 0. Since

g(x) is close to vertical,

But onL 1,co=-uy, _y :-u, co =O, so

° u2(Y°) (12)

J" Lt Yo

Summing contributions yields

APw = PC°'(a)W(x°'Y°) - P 2

This form in effect reproduces Stratford's principal result, arrived at in Ref. 5 by a

heuristic argument (cf. also Ref. 6 for a more accessible account). From this

point on, it is possible to follow Stratford's original analysis. The following

conditions exist at x = xo = O:

Aty = O:

10



1

(14)

and lZy _ 0 at onset of separation.

At y :_:Yo:

,,,= ,,,(a,o)---_, (a)

llyy _ 0

• +
(15)

Y

with R' : - I u(O, y, )dy,
0

Let

u = ay + fly2 + },y3 (16)

and fit the constants to (14) and (15):

11
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1 o)p =Ge_(o,
1

r - ,,.(o.o)
6 _y;_

a=-co(a)(l+ Yo p.,.(O, O)

(17)

Let _ - Yo px(O ' O)
la(o,.

(18)

so a:-_ow (a)(l-_/ (19)

and the condition for separation requires _ -- 2.

Forming W(O,y o) and u(O.y o) in terms of the constants results in:

P
(2O)

I /2But from (18), yo 2 = _2 ]d(Ow
\ P_Y

(21)
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with p = pv

Therefore, at _ =2,

(22)

in (22), Apw is the pressure rise: p(O,O) p(aO),

with x 0 : point of separation

:c - a: point where cow - c_o(O,yo) (close to the point on the wall wherepx = O, p -- mOO.

Px px(O,O): pressure gradient at point of separation.

Equation (22) is essentially Stratford's criterion 5'6, with a slightly different

interpretation of the constant term.

IV. Separation Condition for Symmetry Plane of Three-Dimensional Plane Flow

On the symmetry plane (z - 0), the transverse velocity component w is zero, or

13



(23)

The Navier-Stokes equations take the form

(24)

where (o3 is the vorticity component normal to the symmetry plane and

V2II 7__ ltxx + U2.y + llzz = O)2t -- O.)3y_s

JV2v = vxx + Vxv + vzz = 03, - o)l,

(25)

with coI and (o2 the vorticity components in the :c,y directions, respectively. Let

Y

qJ(x,y) = -Iu(x, yl)dyl (26)
o

Then Wy =-u(:c,y)

Y

and % = v(:c,y) + f W(:c,y_)dy, (27)
o
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It is again possible to consider the variation dH on a curve y q(x) in the

symmetry plane. The counterpart of Eq. 51 becomes

dH = pc°3{uc"_ + q' (r)_" - i W(x'Y_)dYt } dx + la(V2u + q"(x)V:v)dxo
(28)

Again let q(.v) be a closed curve composed of the segments C. L 1, L 2 and again

let C be a contour curve on which co3 -- const. Evaluating the integral

contributions fdH for the segments in the same way as before results in

(" o g(-_) "_

+ j" 3
cl 0 /"

= pco3(a ' O)Ud(O,Yo)- pu2(O'y°) (29)
2

On comparison with Eq. (13), one notes that the counterpart Eq. (29) retains the

form of the previous result, requiring but a slight re-interpretation of the

pressure-rise term. It is now supplemented by an additional term that accounts

for the presence of the transverse velocity. It will be noted that the integral of W

makes it in effect the mean value of W over the area described by the closed

curve q(x). As to be expected, if the mean of the transverse velocity is directed

toward the symmetry plane, a smaller pressure rise than that needed to

separate the original two-dimensional flow is required to separate the flow in

the symmetry plane. If the mean of the transverse velocity is directed outward,
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the opposite is true. The remainder of the analysis proceeds as before. The

separation condition Eq. (22) will be reproduced, with the left-hand side of (29)

replacing Ap_,.

Conclusions

Topological concepts have been used to derive separation conditions for

two- and three-dimensional laminar flows. The result for two-dimensional flow

confirms the form of the well-known Stratford criterion, giving it a topological

basis. The result for three-dimensional flow, applicable to the symmetry plane,

is a simple modification of the Stratford form. The pressure-rise term is

supplemented by a term that accounts for the presence of a transverse velocity.

If the transverse velocity is inward toward the symmetry plane, a smaller

pressure rise than that needed to separate a two-dimensional flow is required to

separate the flow in the symmetry plane. If the transverse velocity is outward,

the opposite is true.
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